
SEDRIS Transmittal Format to Compact Terrain Database

(STF to CTDB)

STF to CTDB User Manual

Prepared by:

Kevin Wertman
Rong Wang

Table of Contents
1 Introduction ...3
2 STF to CTDB command line ...3
3 STF to CTDB configuration files...6

3.1 Features File ..6
3.2 Attribution and Default Files..8

4 STF to CTDB environment..10
5 FAQ ..10

5.1 How do I create a custom features.rdr file? ..10
5.2 My terrain has large holes, or looks incorrect. What could be going wrong?..11
5.3 How do I compile VPF and DTED datasets into a CTDB?11
5.4 How can I validate and inspect my SEDRIS data?..12
5.5 How can I create the single cells of a multi-cell CTDB in separate processes?12

1 Introduction

The STF to CTDB compiler produces a CTDB from environmental data stored in a STF
file set. There are several ways for the user to tailor the STF to CTDB compilation
process in order to produce CTDB from a wide variety of data sets. This document
describes how to configure the STF to CTDB compiler and provides tips for converting
your SEDRIS data into the CTDB format.

The STF to CTDB has a rather large set of command line options that are used to control
the compilation process. These options and their default values will be described in the
2nd section of this document. In addition, the compiler uses several configuration files to
govern exactly how it is to map the SEDRIS data into CTDB. These configuration files
will be described at length in the 3rd section of this document. The 4th section will
document where the STF to CTDB will attempt to find these configuration files in its
environment, as well as which files and directories the compilation process will create
and/or modify.

The final section contains FAQs.

2 STF to CTDB command line

Accessing a printout of the STF to CTDB compiler’s command line arguments can be
done by issuing the command:

stf_to_ctdb –help

This will print out the list of command line arguments and their meaning. Captured here
is a list of all current arguments, their default value, and a description of their meaning.
Options with a shaded background are required for operation. Default values with a
shaded background indicate the option points to something in the environment (a file or
directory that may be read or used).

Option Default Value Description

-transmittals <string> “”
Comma (or space) delimited
list of SEDRIS transmittal
files to be converted.

-output_base_name <string> “”
CTDB output base name (no
extension or path)

-output_path <string> “.”
Set the output directory
where CTDB database should
be created.

Option Default Value Description

-data_path <string> null

Points STF to CTDB to
alternate data/ directory
where the following files
must be located: coord.rdr,
attribution.rdr, wgs84grd file,
and defaults.rdr.

-temp_path <string> temp

Sets the output directory for
the temporary files created
during compilation. STF to
CTDB will attempt to create
this directory if it doesn’t
already exist.

-features <string> features.rdr
Tells the compiler which
features file to use during the
compilation.

-version <integer> 1
Specifies CTDB version (not
related to CTDB format)

-gridded |
-nogridded

-gridded
Specifies whether the CTDB
can have gridded patches.

-tinned |
-notinned

-tinned
Specifies whether the CTDB
can have tinned patches

-level_of_detail <HIGH or LOW> HIGH

Specifies what level of detail
information should be
extracted from SEDRIS
Transmittal at.

-zone_number 0

Specifies the UTM zone
number for CTDB.
Generally not needed, unless
the dataset borders 2 UTM
zones.

-post_spacing <integer> 0

Allows user to specify the
grid post spacing in the
CTDB. If 0, the STF to
CTDB compiler will attempt
to determine the post spacing
from the SEDRIS data
provided.

-fill_empty_posts |
-no_fill_empty_posts

-no_fill_empty_posts

Specifies whether empty
posts should be filled in with
data interpolated from the
surrounding posts.

-geoid_data_file <string> “”
Specifies name of file
containing NIMA geoid data.

-gcs_mode <simnet, single, or
multi>

simnet

Specifies what type of CTDB
to compile. “simnet”
generates a flat earth
SIMNET style CTDB.
“single” and “multi” create
single and multi-cell GCS
CTDBs.

Option Default Value Description

-use_gtrs |
-no_gtrs

-no_gtrs

Specifies whether a multi-cell
CTDB creation should create
GTRS based CTDBs (rather
than old-style GCS based
CTDBs)

-cell_id <integer> 0
Specifies GCS cell number to
compile. Use only if -no_gtrs
command line switch is set.

-geotile_id <string> NULL
Specifies GTRS geotile to
compile. Use only if
-use_gtrs switch is also set.

-gen_mc_header |
-no_mc_hdr

-no_mc_hdr

Instructs STF to CTDB to
generate a multi-cell CTDB
header file for the extents of
the transmittals specified
with the –transmittals option.
No other processing is done.

-list_cells |
-no_list

-no_list

Instructs STF to CTDB to
print out a list of cell IDs for
the given set of SEDRIS
transmittals specified with
the –transmittals option. If –
use_gtrs is specified, the cell
IDs will be GTRS based. No
other processing is done
when this option is specified.

-list_holes |
-no_hole_list

-no_hole_list
Print the location of each
hole found in terrain skin.

-short_soil |
-long_soil

-long_soil

-short_soil assign soil values
to entire patches rather than
individual grid posts (-long
soil).

-use_metadata |
-no_metadata

-no_metadata
Use metadata file created
with previous run of the
compiler.

-use_object_data |
-no_object_data

-no_object_data
Use temporary object data
created with previous run of
the compiler.

-area_of_interest (utm or gd) NULL

When -area_of_interest is set
then the created CTDB will
have the extents specified via
the min/max boundary
arguments. This option is
meaningless during multi-cell
CTDB creation.

-minimum_x_bound <float> 0.0

Specifies minimum
easting/longitude when
-area_of_interest is set to
utm/gd, respectively

-minimum_y_bound <float> 0.0

Specifies minimum
northing/latitude when
-area_of_interest is set to
utm/gd, respectively.

Option Default Value Description

-maximum_x_bound <float> 0.0

Specifies maximum
easting/longitude when
-area_of_interest is set to
utm/gd, respectively.

-maximum_y_bound <float> 0.0

Specifies maximum
northing/latitude when
-area_of_interest is set to
utm/gd, respectively.

-memory_model (SMALL, MEDIUM, or
LARGE)

MEDIUM

Specifies the memory model
to be used by the SEDRIS
API when extracting SEDRIS
data.

-custom_pat_column <string> NULL

Comma delimited list of
EDCS 4.0 attribute labels for
which columns will be added
to the PAT and information
will be stored when that code
is found on a polygon in the
STF. The specified attributes
must map successfully to a
FACC 2.1 code with coded
values.

-transpose_world_3x3 |
-no_transpose_world_3x3

-no_transpose_world_3x3

Specifies whether the
compiler should transpose the
world 3x3 transformation
matrix found on certain
models. In some older
SEDRIS transmittals these
matrices were produced
incorrectly.

-keep_temp_files |
-no_keep_temp_files

-no_keep_temp_files

Instructs the compiler to
preserve temporary files used
during the compilation
process. If the temporary
files are not preserved, then
the –use_object_data and
–use_metadata options will
not work.

-help -
Prints the list of command
line arguments.

While these command line options may be specified on the command line every time,
they can also be set using the environment variable STF_TO_CTDB_ARGS. Any
argument stored within the STF_TO_CTDB_ARGS string will be read by the compiler.
Any argument given on the command line overrides a matching argument in the
environment variable.

3 STF to CTDB configuration files

3.1 Features File

STF to CTDB has several user editable configuration files. The most important file is the
features file. It is this file that dictates the discovery of mappable SEDRIS DRM objects.
This done by laying out all the combination of ECCs, EACs and DRM classes that the
compiler will need to map into CTDB. If a combination is found in the transmittal, but
not in the features file, that data will not be compiled into the CTDB. The compiler will
log the combination in such situations. For more information on the mapping process see
the STC 2002 STF to CTDB presentation. The STF to CTDB ships with a default
features file named features.rdr that contains most mappings to be encountered when
creating CTDBs. It may be that this file is enough to convert your STF. However in
most cases some tweaking is required. The features file consists of the following
sections:

Features File Section Applicable DRM
Classes

Description

gridded_terrain <Property Grids> Mapping to gridded terrain.
polygonal_terrain <Polygons> Mapping to polygonal terrain.

water_terrain <Polygons> Mapping to microwater.

building
<Geometry Models>,
<Point Features>,
<Areal Features>

Mapping to volume models
(uses roofline algorithm for
<Geometry Models>)

obstacle
<Geometry Models> Mapping to volume models

(uses bounding box algorithm
for <Geometry Models>)

bridge <Linear Features> Mapping to bridges.
river <Linear Features> Mapping to laid linear rivers,
road <Linear Features> Mapping to laid linear roads.

railroad <Linear Features> Mapping to abstract railroads.

trees
<Point Features>,
<Linear Features>

Mapping to trees and tree lines

canopy_edge
<Areal Features> Mapping to abstract canopy

edges.

canopy_roof
<Polygons> Mapping to physical canopy

roofs

soil_defrag
<Areal Features> Mapping to soil

defragmentation areas.
powerline <Linear Features> Mapping to abstract powerlines
pipeline <Linear Features> Mapping to abstract pipelines.

political_boundary
<Linear Features>,
<Areal Features>

Mapping to political
boundaries.

See the STF to CTDB mapping document for more in-depth information regarding the
mappings above. Here is the brief sample of the syntax of the features file:

(
 (polygonal_terrain
 (SE_DRM_CLS_POLYGON
 (TERRAIN ROAD VEHICLE_LOT WATERBODY PARK))
)
 (gridded_terrain
 (SE_DRM_CLS_PROPERTY_GRID
 (TERRAIN TERRAIN_ELEVATION_PROPERTY_SET))
)
 (building
 (SE_DRM_CLS_GEOMETRY_MODEL_INSTANCE

 (BUILDING ADMINISTRATION_BUILDING AERODROME AERODROME_TERMINAL))
 (SE_DRM_CLS_AREAL_FEATURE
 (AIRCRAFT_HANGAR BUILDING BARRACK BARN))
;
; this section represents a comment in a features file.
; (SE_DRM_CLS_POINT_FEATURE
; (BUILDING ADMINISTRATION_BUILDING AERODROME AERODROME_TERMINAL))
)
 (bridge
 (SE_DRM_CLS_LINEAR_FEATURE
 (BRIDGE ENGINEER_BRIDGE OVERPASS BRIDGE_SPAN))
)
 …
)

Each section maps to zero or more DRM classes, each of which in turn specifies the
EDCS Classification labels that must be attached to the DRM class to complete the
mapping. So in the first example, any polygon found with a <Classification Data> with
the EDCS concept “TERRAIN” will map to polygonal terrain. In the case of buildings,
there are two sections, one for <Geometry Model Instances> and one for <Areal
Features>. In this example, the section for <Point Feature> buildings has been
commented out and will not be read by the compiler.

Any DRM class / EDCS label combination that does not have an entry in the features file,
but could possibly be mapped, is logged in the file (output_base_name)_unmapped.log.
All mapping that successfully take place are logged in the file
(output_base_name)_mapped.log. In both cases, output_base_name is the same string
that is provided with the command line option –output_base_name.

3.2 Attribution and Default Files
The next two files are used to help with attribution of specific CTDB objects. The first
file specifies what EDCS Attributes can be used to provide CTDB attribution. These are
universal for any mapping that needs them, for example the “width” attribution section
will be used to find attribution for bridges as well as trees. It is not expected that the
user will need to edit this file, but it is documented here in the case it is needed. Here is
an example of the syntax in the attribution.rdr file:

(
 (width
 (WIDTH BOTTOM_WIDTH TOP_WIDTH ROAD_TOTAL_USABLE_WIDTH
 ROAD_MINIMUM_TRAVELLED_WAY_WIDTH ROAD_SECOND_TRAVELLED_WAY_WIDTH)
)
 (height
 (HEIGHT_ABOVE_SURFACE_LEVEL OVERALL_BRIDGE_HEIGHT PREDOMINANT_HEIGHT
 PREDOMINANT_HEIGHT_WITHIN_OBJECT PREDOMINANT_VEGETATION_HEIGHT
 MAXIMUM_OBSTACLE_HEIGHT)
)
 (density
 (BRUSH_DENSITY WOODY_VEGETATION_DENSITY)
)
 …
)

So to follow this example, any <Property Value> found with the EDCS Attribute label of
“BOTTOM_WIDTH” will be used to determine the width of the object it is attached to.
The following values are expected to be defined in the attribution.rdr file:

• density
• height
• foliage_height
• diameter
• opacity
• width
• length
• angle

The following entries in the attribution.rdr file are required for elevation grid data table
processing and simply tells the compiler which EDCS attribute labels to use to determine
the diagonalization, elevation, trafficability, etc. The default values for these entries
should be sufficient for any regular STF to CTDB usage.

• diagonalization
• elevation
• trafficability
• x_axis
• y_axis

The second attribution related file is the defaults.rdr file. It is in this file that a user can
compensate for missing or unknown data in the STF being converted. Its syntax is
similar to the features file syntax. We’ll use the following snippet as an example:

(
 (building
 (height 10)
 (width 10)
 (length 10)
 (angle 0)
)

 (bridge
 (height 10)
 (width 10)
 (length 10)
 (angle 0)
)
 (trees
 (height 10)
 (foliage_height 8)
 (diameter 2)
 (opacity .60)
)
 (canopy_edge
 (density .60)
)
 …
)

Each of the main sections defines the CTDB type whose defaults are being defined. The
list is the same as those that appear in the features file. Under that are attribute / value
pairs that specify the attribute and the default value. The attributes are the same as in the
attribution.rdr file. For this example, if a <Point Feature> classified as a tree does not
have a <Property Value> that gives the “foilage_height” attribution, then the default

value of 8 meters is used instead. If that is not the desired foliage height, then the user
can change it to a value more representative of the trees they desire.

4 STF to CTDB environment

The STF to CTDB compiler expects to find certain files in certain places in the
environment it is being run in. The files and directories are relative to the place where
the compiler executable is located. Here are the files the compiler expects to find:

data/defaults.rdr defaults configuration file described in section 3.
data/attribution.rdr attribution configuration file described in section 3.
data/coord.rdr file needed for backend CTDB creation libraries.
data/wgs84grd.(big or lit) file needed by SRM library for certain SRF conversions.

The compiler creates the following files when run:

(basename)_unmapped.log
Created in present
working directory.

list of unmapped DRM classes and the classification codes they contain,
where (basename) is the CTDB base name given in the –output_base_name
argument.

(basename)_mapped.log
Created in present
working directory.

list of all mapped DRM classes and the classification used to map them,
where (basename) is the CTDB base name given in the –output_base_name
argument.

.stf2ctdb_gcache
Created in data path
directory.

Cache of the grid post spacing for transmittals so the second time the
compiler is run on the same transmittal it can lookup the post spacing.

Also created are a series of temporary files used during the compilation. These are
deleted by default, but can be kept using the –keep_temp_files option so that they may be
used to re-run certain portions of the compilation process. They can be found in the
directory specified in the option –temp_path and all end with the suffix .tmp. These files
can consume large amounts of space.

5 FAQ

5.1 How do I create a custom features.rdr file?

The best way to create a features.rdr file customized for a specific SEDRIS transmittal is
to start with the features.rdr.empty file that can be found in the sample_features directory
of the STF to CTDB compiler distribution. Running the STF to CTDB with –features
features.rdr.empty as a command line option will cause the compiler to attempt to convert
the STF to a CTDB with no mappings defined. Every primitive DRM class it encounters
with a valid classification code will be logged in the file unmapped.log. With this
unmapped.log file you will have a roadmap as to what DRM class / EDCS classification
combinations exist within the transmittal. Copy the features.rdr.empty to a new features
file and fill in the mappings based on what exists in the unmapped.log.

5.2 My terrain has large holes, or looks incorrect. What could be going
wrong?

Some terrain generation processes classify the terrain based on what is lying on top of it,
or integrate certain features right into the terrain. While this isn’t necessarily the wrong
way to generate terrain data, it tends to lead to some interesting mappings for the STF to
CTDB compiler. For example, when an STF was encountered that had all terrain
polygons that lay under roads classified as EDCS Classification ROAD, the features file
did not pick up those polygons as terrain and left them out of the completed CTDB. This
caused the CTDB to have holes in the terrain under the roads, and they weren’t
traversable at all by the vehicles in the SAF. If there seem to be holes in the created
terrain, check the unmapped.log file for any <Polygon> DRM objects that have not been
mapped. If the classifications for those DRM objects could be in any way considered as
terrain, then add the mappings to the polygonal_terrain section of your features file. In
many cases this cleans up the terrain holes.

5.3 How do I compile VPF and DTED datasets into a CTDB?

In order to create a CTDB from VPF and DTED data, first convert native datasets to STF
using SEDRIS provided tools such as DTED to STF and VPF to STF, or other available
conversion tools. Once the DTED and VPF data is in STF, the STF to CTDB can be used
to create a CTDB.

The STF to CTDB can compile both the VPF and DTED STFs into a single CTDB using
the multiple STF capability of the compiler. This can be accomplished by specifying
both STFs in the –transmittals argument, for example:

–transmittals “my_vpf_data.stf my_dted_data.stf”

or
–transmittals my_vpf_data.stf,my_dted_data.stf

The extents of the created CTDB will be derived from the extents of the first transmittal
specified.

Due to the nature of the VPF and DTED datasets, the following set of options is required
to convert them into a CTDB using STF to CTDB in addition to the regular options:

• -level_of_detail LOW
• -post_spacing 100
• -fill_empty_posts
• -notinned

The post spacing must be specified because VPF and DTED datasets are stored in the
geodetic spatial reference frame, and the STF to CTDB cannot correctly determine the
post spacing of the SIMNET or GCS based CTDB from geodetic data. The value of
100 meters is just a recommended post spacing for DTED based datasets, and can be
changed as required.

Since there is no soil or trafficability information stored in native DTED datasets, all
terrain soil and trafficability in a CTDB created from a DTED STF will be set to default
values for all terrain.

5.4 How can I validate and inspect my SEDRIS data?

It is always recommended that SEDRIS transmittals being converted using the STF to
CTDB compiler be validated first. There are two tools provided by SEDRIS called
Rules Checker and Syntax Checker that will validate the transmittal against the rules that
govern the SEDRIS DRM. There are some extreme cases that if a transmittal fails the
Syntax Checker then it could cause the STF to CTDB to crash because it expects the data
it is reading the have valid syntax.

Another tool that is extremely helpful is the SEE-IT tool. This tool can find holes in the
terrain represented in the STF as well as other problems that can cause an invalid CTDB
to be created. Notably it can detect when road features don’t connect properly, which
would lead to disconnected road and river networks in the CTDB created by STF to
CTDB.

The final tool to help with STF to CTDB conversions is the Side-By-Side viewer by
AcuSoft. This tool possesses the capability to load the STF you converted and the CTDB
just created and view them side by side to look for differences. It also allows you to
investigate individual polygons by using the “polygon select” mode and viewing the
corresponding SEDRIS data structures underneath the selected polygon. This is
particularly useful for debugging possible soil and trafficability issues.

Directions for obtaining all tools mentioned above can be found at the
http://tools.sedris.org website.

5.5 How can I create the single cells of a multi-cell CTDB in separate
processes?

In order to create an individual cell or geotile for a large multi-cell CTDB, the user must
specify the cell or geotile id on the command line in conjunction with the -gcs_mode
multi argument. In order to find out which cells/geotiles the STF datasets covers, the -
list_cells option can be used. Also, when compiling cells of a multi-cell CTDB
individual, the multi-cell header must be created in a separate step. Here’s an example of
all necessary steps to create a multi-cell GCS based CTDB:

C:\stf_to_ctdb>stf_to_ctdb.exe -transmittals my_multi_cell_dataset.stf -no_gtrs -
list_cells
43080 43081 43440 43441
C:\stf_to_ctdb>stf_to_ctdb.exe -transmittals my_multi_cell_dataset.stf -no_gtrs -gcs_mode
multi -cell_id 43080 -output_base_name my_multicell_ctdb
…
my_multicell_ctdb.dir/cell43080.c7l is created.

C:\stf_to_ctdb>stf_to_ctdb.exe -transmittals my_multi_cell_dataset.stf -no_gtrs -gcs_mode
multi -cell_id 43081 -output_base_name my_multicell_ctdb

…
my_multicell_ctdb.dir/cell43081.c7l is created.

C:\stf_to_ctdb>stf_to_ctdb.exe -transmittals my_multi_cell_dataset.stf -no_gtrs -gcs_mode
multi -cell_id 43440 -output_base_name my_multicell_ctdb
…
my_multicell_ctdb.dir/cell43440.c7l is created

C:\stf_to_ctdb>stf_to_ctdb.exe -transmittals my_multi_cell_dataset.stf -no_gtrs -gcs_mode
multi -cell_id 43441 -output_base_name my_multicell_ctdb
…
my_multicell_ctdb.dir/cell43441.c7l is created

C:\stf_to_ctdb>stf_to_ctdb.exe -transmittala my_multi_cell_dataset.stf -no_gtrs -
output_base_name my_multicell_ctdb -gen_mc_header
…
Wrote multi-cell header file my_multicell_ctdb.dir/my_multicell_ctdb.m7l with the
following extents:

 SW Corner: (50.000000, 10.000000)
 NE Corner: (52.000000, 12.000000)

C:\stf_to_ctdb>

The process detailed above results in the very same multi-cell CTDB that would have
been created with the following single command:

C:\stf_to_ctdb>stf_to_ctdb.exe -transmittals my_multi_cell_dataset.stf -no_gtrs -gcs_mode
multi -output_base_name my_multicell_ctdb
…
my_multicell_ctdb.dir/cell43080.c7l is created.
…
my_multicell_ctdb.dir/cell43081.c7l is created.
…
my_multicell_ctdb.dir/cell43440.c7l is created
…
my_multicell_ctdb.dir/cell43441.c7l is created
…
Wrote multi-cell header file my_multicell_ctdb.dir/my_multicell_ctdb.m7l with the
following extents:

 SW Corner: (50.000000, 10.000000)
 NE Corner: (52.000000, 12.000000)

C:\stf_to_ctdb>

The process is the same for GTRS based multi-cell CTDBs, with the exceptions that the -
use_gtrs option is used instead of -no_gtrs and the -geotile_id option is used instead of
the -cell_id option. The -list_cells argument will output geotile id strings if the -use_gtrs
option is specified.

